SpeakinSpell Software Design Documentation
1. Table of Contents

11.
Table of Contents

42.
Document History

43.
Overview and Scope of this Document

43.1.
Target Audience

53.2.
Open Source Document

53.3.
SDD vs. Code Comments

53.4.
SDD vs. docs on websites

53.5.
SDD vs. user’s guide

54.
Project Organization

54.1.
Tools Used

64.2.
Directory and File Structure

64.2.1.
<Root>\

84.2.2.
\gui\

84.2.3.
\Locales\

94.2.4.
\Libs\

94.2.5.
\SavedVariables\

94.3.
Where is the user’s data saved?

104.4.
Web Presence Structure

104.5.
Ticket Management Philosophy and Future Development

115.
Major Functions and Overall Flow

115.1.
Addon Startup, login, and initialization procedures

115.1.1.
Game Engine and Addon load order overview

115.1.2.
The load process specific to SpeakinSpell

145.2.
Data Structures and Related Concepts

145.2.1.
SpeakinSpell

145.2.2.
SpeakinSpellSavedData

145.2.3.
SpeakinSpellSavedDataForAll

145.2.4.
SpeakinSpellSavedData.EventTable

155.2.5.
EventTableEntry (ete)

155.2.6.
DetectedEvent (de)

155.2.7.
Relationship between DetectedEvent and EventTableEntry

155.2.8.
SpeakinSpellSavedData.NewEventsDetected

155.2.9.
SpeakinSpell.RuntimeData

155.2.10.
Event keys (de.key)

175.2.11.
Event Types (de.type)

175.2.12.
Event Names (de.name)

175.3.
Event Notifications – How we know what happened

175.3.1.
Registering for Events

175.3.2.
Wowevents.lua

185.3.3.
Other Events

185.3.4.
Detected Event Stubs

195.3.5.
ValidateObject

205.3.6.
ValidateDetectedEvent

205.3.7.
OnSpeechEvent(Detected Event Stub)

20Aside: Spell Ranks

215.3.8.
Building the “/ss create” list – philosophy

225.4.
Chat Functions – How we speak

225.4.1.
SpeakForSpell(DetectedEvent)

225.4.2.
AllowSpeakForSpell(DetectedEvent)

225.4.3.
Deciding what to say

225.4.4.
SayOneLine

235.4.5.
Proprietary Self-Only Channels

235.4.6.
Chat Frame APIs

266.
More Functional Areas

276.1.
Localization

276.1.1.
L[“string”]

276.1.2.
AceLocale

276.1.3.
Default Speeches

28Aside: Brevity is the soul of wit

286.1.4.
User’s Guide

296.1.5.
Grammar

306.2.
<Substitutions> Engine

306.2.1.
Parser.lua – parse the input parameters

316.2.2.
substitutions.lua – return the substituted text

326.2.3.
How to add a new substitution variable

326.3.
Patching old saved data

336.4.
The Big Red Button Easter Egg

346.5.
The Advertisement Feature (/ss ad, ads.lua)

346.5.1.
History

356.5.2.
Current Status (3.2.2.12)

35Aside: how to make ads user-configurable

35Aside: why not to make the ads user-configurable (stolen credit story)

36Aside: Random Tip #x

366.6.
Default Speeches, Templates, and Content Packs

366.6.1.
Modularization, Terms, and Data Structures

366.6.2.
Template Objects

366.6.3.
Merging Data

376.6.4.
Related GUI (/ss import)

38Aside: the original hard-coded default speech data in RAM

386.7.
Options GUI Architecture

386.7.1.
Overview

386.7.2.
Source Code Organization

386.7.3.
WowAce Libs

396.7.4.
Blizzard API Widgets

396.7.5.
SetLastPageViewed and “/ss toggle”

406.7.6.
“/ss screen-name” implementation

406.7.7.
Data Synchronization of GUI page names

416.7.8.
Color-Coding in the GUI = escape sequences

41Aside: Invalid Escape Sequences

426.7.9.
Minimap Button / Lib Data Broker

436.7.10.
LibBetterBlizzOptions

436.8.
Third Party API and Addon-Addons

2. Document History

	Author
	Date
	WoW game client version
	SpeakinSpell Version
	Document Change

	Ris Misner
	2009-11-20
	3.2.2
	3.2.2.12
	Created rough draft and a start to this document. Many new sections should probably be added to discuss additional topics. Some todo notes have been added throughout in this initial draft.

	Ris Misner
	2009-11-20
	3.2.2
	3.2.2.12
	Organization, number headings, add a bunch more info

	Ris Misner
	2009-11-23
	3.2.2
	3.2.2.14
	Added chapter 6.8 Third Party API and Addon-Addons

	Ris Misner
	2009-11-27
	3.2.2
	3.2.2.15
	Added chapter 5.2 Data Structures and Related Concepts

3. Overview and Scope of this Document

This document is intended to give an overview of the design, architecture, and implementation of SpeakinSpell.

3.1. Target Audience

The target audience of this document is software engineers who may be interested in understanding how SpeakinSpell is implemented, in order to change, enhance, or debug it in any way, or who may be interested in joining the SpeakinSpell team as a contributing author.

You are expected to already have an understanding of what SpeakinSpell is and what it can do, are familiar with using it, and have read the entire in-game user’s guide, and used each of the features described there.

You are also expected to have some understanding of programming practices, related jargon, the LUA language, and the Blizzard API, as well as WoW game mechanics.

3.2. Open Source Document

I am not a long time pro at LUA or WoW Addon programming. This project is my only experience so far in either programming environment, so I have rambled into various asides on both topics throughout this document, to discuss issues of overall style and architecture which are influenced by the structure of the LUA language and blizzard’s API.

I am not a pro at the places where the Blizzard API and the default LUA language overlap or cross each other, so I may confuse one for the other in some places. Oh well.

In any case, feel free to make corrections to this document if you find mistakes. The SVN repository is open for commits from anyone (until someone abuses that privilege in some way, such as deleting all the files or something malicious like that – committing an honest mistake to the repository is acceptable). That goes for adding new content too, whether you research the code to understand and document it yourself, or simply leave a stub topic with a heading and some leading questions I can find and answer.
3.3. SDD vs. Code Comments

Additional technical documentation is also available in the code itself, and in all cases, the code comments are more accurate and more up-to-date than this document, which is a summary and reference guide by comparison to the code itself.

3.4. SDD vs. docs on websites

Additional discussion history is available on the tickets page on the SpeakinSpell project page on wowace.com, and in the discussion thread on the distribution download pages for SpeakinSpell on curse.com and wowace.com.

3.5. SDD vs. user’s guide

This is not a user’s guide, and will not document the full scope and implementation details of each individual end-user feature. If there is a tricky aspect to a set of functionality in SpeakinSpell, then that special trick I had to pull, or the stylistic guidelines I fell into, may receive its own section of this document, but I do not intend to document each individual end-user feature’s implementation here, because the usage is adequately documented in the user’s guide, and the implementation is typically documented fairly well in the code itself.
4. Project Organization

4.1. Tools Used

The only essential tools needed to develop a wow addon is any text editor, and the WoW game client. I use the following tools to assist these efforts, but these are optional, and future developers may choose to use other tools.

Addon Studio for World of Warcraft – is my preferred LUA code editor because it is based on MS Visual Studio. The visual XML frame editor is outdated and fail, don’t even try to open it. But the LUA syntax highlighting and collapsing interface is effective and useful. This is what you must use to open the SpeakinSpell.wowsln and SpeakinSpell.wowproj files.

SubVersioN (SVN) – is a source code control database system to track the history of changes to the source code. WoWAce provides us with a free SVN repository, which I have left open for any and all people to view and even edit. To push a release to curse.com is integrated with SVN by tagging a snapshot of the code at the desired release revision, which also helps tracking what was changed from one release version to the next. Many client programs are available for accessing an SVN repository, all supporting the same commands through different interface styles.

TortoiseSVN – is my preferred SVN client because it is integrated into the Windows File Explorer via right-click context menus and icon overlays.

Collabnet SVN – is a command-line SVN client (MS-DOS style) which I sometimes use to run SVN commands from batch files and similar automated scripts.
Python – is the Python programming language interpreter which I like to use to write little scripts to do complicated batch operations on my LUA files. Python is very similar to LUA. Any *.py files included with the SpeakinSpell addon package are scripts that I checked into SVN, that are not actually used by the addon itself (the game engine won’t look at them), but they are useful for maintenance on the addon source code. You must have the Python language interpreter installed on your system in order to execute any *.py file.
4.2. Directory and File Structure

<Root> below refers to the path to the SpeakinSpell directory, something like:

<Root> = C:\Program Files\World of Warcraft\Interface\Addons\SpeakinSpell

4.2.1. <Root>\

Files in the root include core addon files, project configuration files, and documentation. Anything that does not fit one of the categories described for the sub-directories below.
	File
	Description

	loader.lua
	this is somewhat analagous to a stdafx.h or global header file. It declares some important data structures, defaults, constants, and globals that we want to be able to use anywhere else in the code.

	debug.lua
	Debugging functions, which is basically just a variety of print functions for different data types

	utils.lua
	Shared utility functions, basic abstract functions/ subroutines

	data.lua
	Functions on the main data structures: SpeakinSpellSavedData (ForAll) and SpeakinSpell.RuntimeData.

	templates.lua
	Functions that deal with the default speeches and content packs, which use a data structure format called a Template

	oldversions.lua
	Functions that upgrade older versions of the saved data to be compatible with the current code

	wowevents.lua
	Functions that are signaled in response to registered blizzard addon framework event notifications

	slashcommands.lua
	Functions that process the “/ss something” slash command interface

	substitutions.lua
	Functions to process <substitution> variables in the speeches. This module focuses on choosing a value to use for a substitution. This is tightly bound to the parser.lua which parses the whole speech to find substitution references.

	parser.lua
	Functions to parse a speech text string for <substitutions>. This module creates a substitution key object which is a parsed result for the advanced formatting options such as <sub*male*female|me> and possessive forms, and future similar advanced formatting options. This substitution key is passed to the substitutions.lua module to determine the value.

	speech.lua
	Functions that speak in the chat. This is where we decide whether an event should be announced, what speech to use, pass off to substitutions.lua and parser.lua to format the finalized speech text, and call the blizzard APIs to send that speech text to the chat frame.

	ads.lua
	Implements “/ss ad” and related functions. The ad text is defined in Locale\DefaultSpeeches-xxXX.lua.

	SpeakinSpell.lua
	The “main” file. Primary initialization is implemented here. This is the closest thing to a main function. Something a little closer to a main function is inherited from the WoWAce libs to call into the init functions defined here, more like the InitInstance function of a MFC app than the main() function of an ANSI C app. This file is responsible for the overall addon architecture coordination, but that basically amounts to the pair of primary initialization functions OnInitialize and OnVariablesLoaded, and the related functionality.

	embeds.xml
	Declares the list of embedded third party libraries, such as all of the Ace libs.

	SpeakinSpell.toc
	Table of Contents file - this is the project definition file used by the game engine, to specify all of the contents of the addon, and which files it needs to load.

	Changelog.txt
	A manually updated file listing the major feature-level changes in the project from version to version. The newest version is always on the top. This file is not touched by the game engine.

	Readme.txt
	Some very basic information about the addon, including basic installation and setup instructions.

	SpeakinSpell.wowsln
	WoW Project Studio solution file, this is the main entry-point file to open the project in the WoW Addon Studio editor. This solution file opens the SpeakinSpell.wowproj file. This file is not touched by the game engine.

	SpeakinSpell.wowproj
	WoW Addon Studio project file lists all the files used by the project (moreso than the TOC). This file is not touched by the game engine.

4.2.2. \gui\

Files in this folder are for the options GUI, minimap button, and all aspects of GUI implementation (other than speaking to the chat frame.)

	File
	Description

	gui\gui.lua
	General GUI functions and shared utilities for creating, managing, and opening the options GUI interface

	gui\generaloptions.lua
	“/ss options” screen

	gui\currentmessages.lua
	“/ss messages” screen

	gui\createnew.lua
	“/ss create” screen

	gui\randomsubs.lua
	“/ss random” screen

	gui\help.lua
	“/ss help” screen

	gui\trade.lua
	“/ss trade” screen (not yet implemented, but stubbed out for a vague idea for a randomized trade barker feature)

	gui\minimapbutton.lua
	Create and handle the minimap button

	gui\import.lua
	“/ss import” screen

	gui\colors.lua
	“/ss colors” screen

4.2.3. \Locales\

All text strings are defined in these files, in order to encapsulate translated text in different languages. This is mostly data definitions, however any grammar-related logic must also be defined in files in this area to support non-english grammar in substitution processing.

Each locale file name uses the format <Name>-xxXX.lua, where the xxXX is the locale code name, and <Name> is the name of the file, describing the scope of text declared in that file.

The current locales supported include

	xxXX
	Locale

	enUS
	US English

	deDE
	German

	koKR
	Korean

Note that locale files are optional. If any locale is not defined, then the equivalent enUS file is used by default.

	File
	Description

	Locales\Locale- xxXX.lua
	the general locale file lists everything not defined in another file, including all of the options GUI labels and tooltips, and any miscellaneous text.

	Locales\Help- xxXX.lua
	the in-game user’s guide contents (the GUI layout and how this text is displayed on the screen is defined in \gui\help.lua)

	Locales\DefaultSpeeches- xxXX.lua
	defines all of the default speech events and speeches

	Locales\grammar- xxXX.lua
	defines functions (logic) to implement grammar rules, such as the logic for the correct possessive form of Stonarius’ vs. Meneldill’s which may be different in non-English languages.

	Locales\BigRedButton- xxXX.lua
	defines the list of text used by the big red button easter egg feature

4.2.4. \Libs\

Third party libraries developed by someone else, but used by SpeakinSpell. Each library has it’s own directory, and the structure is similar to a complete addon (doesn’t always have a toc file though)
4.2.5. \SavedVariables\

Backup copies of old versions of saved user data, archived in the source code control database to support testing the saved data format patch/upgrade functions (see oldversions.lua).

The path in this directory structure takes the form

<Root>\SavedVariables\ <character name> \ <SpeakinSpell version number> \ SpeakiSpell.lua (.bak)

Those two files may be copied into the character’s saved data folder here: (if vista)

C:\Users\Public\Games\World of Warcraft\WTF\Account\RIS\Antonidas\Stonarius\SavedVariables\
For testing, you must copy the files when the game is not running, then start the game. If the game is running, the settings in RAM will take precedent and overwrite the file you tried to overwrite. (not sure about the char select screen, it might be possible to simply logout, but /reloadui saves from RAM to the file first, then almost immediately reloads the file)
With the introduction of account-wide settings saved in the SpeakinSpellSavedDataForAll data structure in the code, backup copies of that file are saved in the \Account\ directory (instead of a character name). The directory structure beneath that is the same as the character directories: <version>\files. For testing, the files may be copied to:

C:\Users\Public\Games\World of Warcraft\WTF\Account\<version>\files
Future development will move more of the data into this area, to make it available to all characters on an account for easier copy-paste kind of support between your own alts.
4.3. Where is the user’s data saved?

At runtime, the user’s saved data is stored in 2 table objects called SpeakinSpellSavedData and SpeakinSpellSavedDataForAll. SpeakinSpellSavedData stores data for the current character only, while SpeakinSpellSavedDataForAll is shared by all of the characters on the same player’s account.

Those 2 data structures are declared as empty tables in loader.lua, and attached to the game engine through SpeakinSpell.toc.

The game engine dumps these data structures each to their own files which take the file name \WoW\WTF\Account\<account name>\ <additional path> \ <addon name>.lua

The <additional path> depends if it’s account-wide or character-specific data.

The game engine also saves a .bak file which appears to be the last-known-good settings file that it was able to load without errors. If the addon loads with LUA errors for any reason, the game engine may decide to revert the user’s settings to the contents of the .bak file.

At load time, loader.lua is executed first, and then the saved variables files are executed to overwrite the empty tables (if saved data exists), then the OnVariablesLoaded function will validate the saved data to create default settings if needed for a new install, or to upgrade/patch old saved data for compatibility with new code using the functions defined in oldversions.lua.

Developer Warning: The .bak does not appear to be updated as frequently as the main file, so if there are errors in the patch functions in oldversions.lua, that can cause the game engine to revert the end-user’s settings to the contents of the .bak file – even other errors that are thrown while loading can also revert to the .bak – which can revert user data to an unexpectedly older state, causing significant data loss. So any changes to the saved data format must be thoroughly tested.
4.4. Web Presence Structure
Wowace.com, curse.com, and curseforge.com are sister sites which host the SpeakinSpell project.

Wowace.com and curseforge.com host the development and project management aspects of the project, while curse.com hosts the end-user download, discussion, and support side.

The SVN repository used for source code control is hosted by wowace. Any SubVersioN client may be used to access it.
The todo list for all future development is maintained through the tickets page on wowace.com.
4.5. Ticket Management Philosophy and Future Development

I try to keep all of my ideas written down, even the most pie in the sky vague ideas. For anything that comes to mind that I might someday like to add to SpeakinSpell, I write a ticket for it on the wowace.com ticket page through the SS project site there.

I have encouraged end-users to also use this site for feature request and bug reports, and it offers public access to support that.

Whenever possible, I try to define the main post of each ticket with a clear and simple goal for what it takes to close the issue. If a ticket can be broken down into multiple isolated tasks that could be released incrementally over several versions of SS, I write tickets for the smaller features, and comment on the meta-ticket to note the cross-references and ongoing progress on the greater issue.

Anyone and everyone is welcome to contribute to this effort.

The future development plans in general will not be described in this document because that would create redundant maintenance vs. the tickets area. However, in some cases far-future development has an impact on present development, and this document does intend to cover the hidden things that are not obvious about the structure of the code, which may include cases where the code is structured around a feature that doesn’t exist yet.
5. Major Functions and Overall Flow
5.1. Addon Startup, login, and initialization procedures
5.1.1. Game Engine and Addon load order overview

1. Blizzard Launcher executes wow.exe and makes sure no other code is injected into the process space to prevent hacks

2. Wow.exe scans the Addons directory, finds and reads all valid TOC files

3. User logs in with password

4. Character select screen

a. The TOC files are only read at step 2. Close and reopen the addons interface here will not reread the TOC files, or scan for new TOC files. Only exit and restart will trigger that.

5. User selects character and enters world

6. The character’s selected addons are loaded

a. This means read all LUA files into RAM and execute the global scope definitions (and function calls in global scope) in each LUA file as they are loaded.

b. The addons are loaded in an undefined order, except for dependencies declared in the TOC files will always be loaded before the addon that depends on it. Otherwise the exact order is undefined.

c. The LUA files within each addon are read and executed in the order declared in the TOC files. Note that a complete exit/restart is needed to add more LUA files to this list, because that’s the only time the TOC file is read.

7. All addons’ saved data files are loaded

a. The order of which addons’ saved data is loaded before others is undefined.

8. The game engine fires an event notification for VARIABLES_LOADED

a. All addons who asked for this event will get it and process it in an undefined order

9. The game engine fires an event notification for player login complete

5.1.2. The load process specific to SpeakinSpell
1. User starts up the game through blizzard’s launcher

2. The game scans the Addons directory and finds a matching filename and directory at \Addons\SpeakinSpell\SpeakinSpell.toc

a. This is the only time at which the game engine will read and parse the TOC file. As a result, using “/console reloadui” will not reload any changes to the TOC file in order to load a new source file added to the project. A complete game exit and restart is necessary to load any change to the TOC file.

3. User logs in with password
4. (optional) User clicks on Addons at the character select screen. The information shown here is defined in the TOC file.

5. User selects a character and enters world

6. Game engine loads all selected addons in an order we must assume is essentially random, except that depencies declared in the TOC file will be loaded before we are.
a. Some addons will “randomly” load before us, while others will load after

b. It’s probably alphabetic, plus dependencies, but could be file order on disk, which is essentially random. No official documentation I could find on this load order. If you need something to load before you do, specify a dependency in the TOC, and that should be all that matters.

c. Any addons to SpeakinSpell which rely on us to load first must specify SpeakinSpell as a dependency in their TOC file to ensure that happens.

d. OptionalDependencies declared in the TOC will be loaded first if they exist, but will not block us from being loadable.

7. The game engine loads each of our files in the order in which they are declared in the TOC file. While each file is loaded, any global scope declarations are executed.

a. Note that the print function is declared very early in this process in loader.lua (our first LUA file specified in the TOC) so that the load order itself can be debugged by printing a statement as each file is loaded and their global scope declarations are executed, including function calls.

b. Note limitations on what/how we can specify things in global scope

i. No references to any members of SpeakinSpellSavedData or SpeakinSpellSavedDataForAll or any other saved data (including default UI options) because that data has not been loaded yet by the game engine

ii. Ideally the global scope should be as minimal as possible using hard-coded data or function definitions that we can call later.

iii. LUA allows a convenient way of declaring “data = function() do this later end” to store functions in data tables and call those functions later. The options GUI declarations are a good example of this. The game engine does a certain amount of parsing on function definitions, but does not execute those functions, so you can reference data that doesn’t exist yet.

8. OnInitialize is called by the Ace library framework (??)

a. This is where we register for notifications, asking the game engine to tell us when certain things happen. There are hundreds of notifications supported. We have to explicitly request the specific notifications that we are interested in. These notifications are the primary basis on which the addon functions.

9. The rest of the addons are loaded

10. The game engine loads the player’s saved variables files for the character and the account-side settings

a. Not sure in which order these 2 files are loaded. We have no hook in between, nor any way to cross-reference the data, so the order between these 2 files doesn’t really matter for anything I can think of.

b. One or both of these files might be missing (new install, or purposefully deleted to force a reset) or they may have been created by an older version of SpeakinSpell.
c. The saved data files are lua files that are loaded and executed in global scope in exactly the same way that our addon’s LUA files are. If these files are edited manually to introduce a syntax error, the game engine will NOT throw LUA errors to complain about saved data files. Instead, it silently tries to load the equivalent .bak file. If that also failes, it will throw away the data that it failed to load, and erase the contents of the corrupted file(s) that it failed to load, thus resetting your saved data to default settings as if a new install.

11. The game engine fires an event called VARIABLES_LOADED (woevents.lua) to alert us that the saved data has been loaded. This calls into OnVariablesLoaded() (in SpeakinSpell.lua).
a. This step will always occur, even for a new install, regardless of whether variables were actually loaded successfully or not.

b. Back in loader.lua in step 7 above, we must declare empty tables for SpeakinSpellSavedData and SpeakinSpellSavedDataForAll, to make sure they exist in global scope as we expect. If the table is empty, OnVariablesLoaded will recreate it with defaults. If it’s not empty, then we validate it through oldversions.lua to bring it up to date with the current code if necessary, and make sure any new settings are defined with defaults.
c. SpeakinSpell signals the on-loaded spell announcement event, which can make the player say a random speech in chat.
12. All Init is complete for us now, but there’s one more thing that happens next

13. On first login (not reloadui) the player’s settings for the default UI, such as the color of party chat, are loaded after all addons have loaded and all addons’ saved variables have loaded.

a. There is no event notification that I know of that signals when this happens

b. This means you can not reference or look up settings from the default UI during any load operation above
i. Not in global scope

ii. Not OnInitialize

iii. Not OnVariablesLoaded

iv. You must do this on-demand (usually we check if it’s been done already, so we only do these late-init things once)
v. This is why the self-only raid warning color can’t default to the player’s default UI raid warning color on a new install – we don’t know that value when we init the saved data. I hope Blizz fixes this in the future, but it may be a security issue to block addons from altering default blizzard UI settings on new installs or completely reset UI states.

vi. During /reloadui, this data for the user’s default UI settings is already in RAM, so it CAN be used – but not when first logging in after exit/restart of the game wow.exe. This makes it a good idea to QA test saved data upgrades and any changes to global scope or load orders with older formats of saved data and complete game restarts.
5.2. Data Structures and Related Concepts

This section describes the main data areas, global variables, data types, and data concepts used in SpeakinSpell.

LUA is a weakly-typed language where everything is basically a table, but SpeakinSpell uses some table formats which are very similar to C++ struct types. Since the LUA language does not require or allow declaring the type of a variable, the type in this sense is implied by the name for any variables I wanted to make more strongly-typed. Any variable called EventTableEntry (ete) or DetectedEvent (de) is expected to follow a certain table format for how the member data is organized in those tables.
5.2.1. SpeakinSpell

The SpeakinSpell object is an AceAddon object. Like everything in LUA, it’s a table. All of the functions and most of the data of the addon are members of this table.
5.2.2. SpeakinSpellSavedData

This global table stores all of the user’s saved data. Note that it is not a member of the SpeakinSpell addon object table – it’s a separate global variable.

The Blizzard addon framework dumps the contents of this table to the saved variables file during logout/exit of the game (including during execution of “/console reloadui”).
The data in this table applies only to the character that is currently logged into the game. Each game character has a separate SpeakinSpellSavedData table, each of which are dumped to separate files under \WoW\WTF\Account\<Account Login Name>\<Realm>\<Character>\SavedVariables\SpeakinSpell.lua.

5.2.3. SpeakinSpellSavedDataForAll
This table works like SpeakinSpellSavedData, except that it is shared between all characters on the same player account, instead of only the current character. This table is dumped to the file \WoW\WTF\Account\<Account Login Name>\SavedVariables\SpeakinSpell.lua.
5.2.4. SpeakinSpellSavedData.EventTable

This is the main most important table in the user’s saved data.

Each entry in this table describes how to announce an event, including the list of speeches for each event, as well as the other event-specific options such as how often to announce and what channel to use.
SpeakinSpellSavedData.EventTable is an array of EventTableEntry objects, indexed by Event Keys. See also: 5.2.10 Event keys.

5.2.5. EventTableEntry (ete)

An EventTableEntry, usually abbreviated ete, is a table describing how to announce an event.

The default contents of an EventTableEntry object are defined in loader.lua in SpeakinSpell.DEFAULTS.EventTableEntry. That default data declaration shows the format of the table.

5.2.6. DetectedEvent (de)

A DetectedEvent, usually abbreviated de, is a table describing a game event that can be announced by SS.

The default contents of an DetectedEvent object are defined in loader.lua in SpeakinSpell.DEFAULTS. DetectedEvent. That default data declaration shows the format of the table.

5.2.7. Relationship between DetectedEvent and EventTableEntry

The de and ete are linked to each other when applicable using DetectedEvent.EventTableEntry and EventTableEntry.DetectedEvent, to map a detected event to its event table entry, and vice-versa.

Every EventTableEntry has an EventTableEntry.DetectedEvent, as the model for what event must be detected in order to announce it with these settings.

The opposite is not true. Not all DetectedEvent objects have a DetectedEvent.EventTableEntry pointer, because not all detected events are configured for announcements in the player’s personal settings in SpeakinSpellSavedData.EventTable.

5.2.8. SpeakinSpellSavedData.NewEventsDetected

This table lists all of the detected events (DetectedEvent objects) which do not have entries in SpeakinSpellSavedData.EventTable (i.e. the user has not set up SS to announce that event)

5.2.9. SpeakinSpell.RuntimeData

This table stores the rest of the data that we need to track during runtime, but do not want to save between sessions in the SpeakinSpellSavedData or SpeakinSpellSavedDataForAll tables. This table is only for “global” data that we want to pass around between functions. There is plenty more runtime data which is local and allowed to fall out of scope.
5.2.10. Event keys (de.key)
Each speech event triggered through SS must have a unique event key (usually called “de.key”).

This event key is a LUA table key (string) used to find the player’s settings for a given event (the EventTableEntry containing the speech list, channel options, etc) by means of a simple table lookup:

local EventTableEntry = SpeakinSpellSavedData.EventTable[de.key]
The format of the event key determines the grouping of game events that will share the same announcement settings in SpeakinSpell.

Typically, the event key is formed from concatenating “type..name..rank” (but not for all cases)
To make an event key that is specific to a certain spell, include the spell name in the key. That way, it gets its own separate EventTableEntry. In the beginning, this was originally limited to the UNIT_SPELLCAST_SENT event, and the key format was type=”UNIT_SPELLCAST_SENT” name=spellname and rank=spellrank as provided with the Blizzard event notification.
To make an event key that applies to multiple spells that can all share the same options in SS, leave the spell name out of the key. That way, any spell cast by the player will use the same event key (assuming it triggers this event), and thus the same EventTableEntry, and thus the same list of speeches, channel selection, and other options for how to announce the event.

For example, the SPELL_DAMAGE event (added in v3.2.2.15) does not include the spell name in the event key, so all spells that do damage will trigger the same event (same EventTableEntry) with the same SS announcement settings. The SPELL_DAMAGE event uses some damage type strings in the event key to differentiate events by giving them differently unique event keys for Critical, Killing Blow, and other hit style information provided with the SPELL_DAMAGE notification from the Blizzard API. This is what enables you to announce a critical strike using a single set of shared options for any spell that scores a critical strike, instead of making you create separate settings for a crit from each individual spell you might ever cast.
5.2.10.1. FOREIGN event keys

Events where the <caster> is not the <player> are labeled in the GUI with text such as “When someone else …” does something. These events use the word “FOREIGN” in the event key, in order to announce other people’s actions differently than your own. It uses a different speech list and all other options because the key name is different so there is a separate EventTableEntry for FOREIGN events.

5.2.10.2. Spell Ranks: Ranked Keys vs. Rankless Keys

The different animals of mage polymorph are technically different ranks of the spell, according to the WoW game engine. In order to announce Polymorph: Sheep differently than Polymorph: Pig, we must be able to support separate settings for each rank. That requires us to include the rank in the event key.

However, for most other cases, we want to announce all ranks of a spell using the same shared settings, meaning the same EventTableEntry, and the same event key, regardless of the rank. So in those cases we must omit the rank from the event key.

Since we want it both ways, we create both a ranked key and a rankless key for all spell events that can potentially include a rank. These are stored as de.rankedkey and de.ranklesskey. The value in de.key is always the active key, depending which key found a non-nil result when looking for EventTable[de.key].
5.2.11. Event Types (de.type)
The DetectedEvent.type is a string value, but must be a value from an enumerated list of supported event types because the type drives a variety of behavior.

The main reason the type can’t be any arbitrary string and must be limited to a value from the supported list is because it’s used as a key into the locale tables to find localized text describing that type of event in the drop-down list in the GUI, for example the prefix “When I start casting: “ is L[de.type] = L[“UNIT_SPELLCAST_SENT”]

In many cases, the type is the blizzard API used to detect the event, for example UNIT_SPELLCAST_SENT. For “other events” the type is arbitrarily assigned by SpeakinSpell in the DetectedEventStub declaration (see also: 5.3.4 Detected Event Stubs) for examples: EVENT, COMBAT, NPC.
5.2.12. Event Names (de.name)

Usually the event name is the spell name, but not all events are triggered from spells, so in some cases the event name is an arbitrary name assigned by SpeakinSpell in the DetectedEventStub declaration (see also: 5.3.4 Detected Event Stubs)

That is why substitutions for <name> <spellname> and <eventname> can differ, even though they are usually the same value.
5.3. Event Notifications – How we know what happened

5.3.1. Registering for Events

During initialization we call an API RegisterEvent to request specific event notifications from the blizzard framework, so that we know what’s happening in the game.

Those events call functions in wowevents.lua, which route the work to the rest of the SpeakinSpell framework.
5.3.2. Wowevents.lua

Each function in this file has the same name as the blizzard framework event that calls into it. This is a standard practice for wow addon development.

I try to keep these functions as thin as possible for stylistic reasons and functional encapsulation. For the most part the functions in wowevents.lua should be limited to converting Blizzard’s notification parameters into a Detected Event Stub object for a call to SpeakinSpell.OnSpeechEvent(DetectedEventStub); (see below) basically extracting the information that we want from blizzard’s event notification and passing it into speech.lua to announce the event in chat if applicable. The flow of logic spreads out from there, mostly into the modules (*.lua files): speech, data, substitutions, and parser.
5.3.3. Other Events

There are many other places throughout the SpeakinSpell code, outside of wowevents.lua, where events are signaled, such as the login event. In all cases, the method of triggering a speech event is to create a DetectedEventStub object and then call SpeakinSpell.OnSpeechEvent.

“Other Events” specify the detected event parameters more liberally, taking full advantage of the flexibility of detected event stubs.

5.3.4. Detected Event Stubs
The DetectedEventStub object is an import design philosophy issue of extensibility.
In LUA, all we ever use are these table data structures, which are very arbitrary, loosely-typed data structures. That makes them highly flexible. That’s why I set it up this way for the OnSpeechEvent function.

The Stub may be lacking any kind of data. OnSpeechEvent will fill in the rest of a stub to create a full DetectedEvent object (usually a variable called de) to describe all of the aspects of the detected event: name, rank, caster, target, etc.
Early on, the equivalent version of this OnSpeechEvent function previously took separate parameters for name, and rank, basically mirroring the parameters of the UNIT_SPELLCAST_SENT event notification from blizzard (which was originally the only one we used)

As the project grew, I added more parameters to this function, but not all events have a rank, and none of the older events needed the new datum that I added for a new event, so maintenance of all the rest of the calls to this function because nightmarish, and the plan was failing to easily reuse this code as an easily recycled entry-point to signal a speech event – it was too much work every time I wanted to add a new event with its own peculiar event-specific data.

So I used this stub method to provide data that is intentionally incomplete. All of the data in the stub is optional, from the perspective of avoiding LUA errors (i.e. unexpected nil values) because anything missing will be filled in with defaults at the start of OnSpeechEvent(). Well, almost optional…

For practical purposes, a stub.name and stub.type must be defined in order to generate the de.key which is how we look up the player’s settings for this event (SpeakinSpellSavedData.EventTable[de.key]).
The stub.name is flexible and can be any string.

The stub.type is currently limited to an enum list because the type is used as a table key into string tables in Locale files, in order to format the display name of this event in the drop-down lists in the options GUI. A future plan related to the stub.type/de.type is to enhance the flexibility to allow for addons to register additional types and provide the necessary locale strings to go with it, but bad types currently become a generic unknown type type just to avoid LUA errors when accessing the Locale tables.
The stub is flushed out with complete event information to support the full range of event-specific substitutions. DetectedEventStub will grow to become a complete DetectedEvent object, usually abbreviated de. The members of de typically match the names of substitution variables to make life easier on the substitution engine in substitutions.lua.’

5.3.5. ValidateObject

This flushing out of the stub into a full DetectedEvent object to provide defaults for missing data is done with a simple and elegant ValidateObject function which deserves its own discussion and has broad usage throughout SpeakinSpell.

-- if any key is missing from obj, it will be imported from DefaultObject

function SpeakinSpell:ValidateObject(obj, DefaultObject)

for key,val in pairs(DefaultObject) do

if obj[key] == nil then -- NOTE: don't replace "false" values

if type(DefaultObject[key]) == "table" then

obj[key] = self:CopyTable(DefaultObject[key])

else

obj[key] = DefaultObject[key]

end

--no, this would bring in whole lists of things like messages

--elseif type(DefaultObject[key]) == "table" then

--
self:ValidateObject(obj[key], DefaultObject[key])

end

end

end

I suppose this function comes from my C++ experience giving me a need for a more strongly typed language with data type constructor functions – I feel a constant need to expect a variable to exist (i.e. because in C++ I would have had to declare it and the compiler would have complained long before runtime) instead of always checking for unexpected nil values all the time at runtime in true LUA style. But I love the elegance of this ValidateObject function and the power it gives me over the limitations I would face in C++ if I tried to achieve a similar flexibility like the way OnSpeechEvent(stub) can be called. This also gives my functions the power of what the Python language calls kwargs.
ValidateObject takes an object to validate, obj, and compares it to a DefaultObject which is a template declaration of what the complete data structure should look like. If there exist any DefaultObject.key member variable that is not in obj, it will be copied.

Note: technically that doesn’t necessarily mean that the data is actually valid, just that it exists. There are several other ValidateSomething functions, mostly in data.lua, where Something is the name of a data structure, and those functions perform the additional data content validation after using the basic ValidateObject function to ensure that some data with expected names actually exists (to prevent LUA errors complaining about nil values)
5.3.6. ValidateDetectedEvent

I use the ValidateObject function to flush out a detected event stub into a full DetectedEvent object where I can be assured there’s a default definition for everything I might expect to be related to an event: event type, target, caster, name, rank, key (for saved data EventTable) etc. even if the call to OnSpeechEvent didn’t describe that value, we can assume for example that the caster is the player if otherwise unspecified.

For extensibility, as I add support for new event-specific information in the stubs and subsequent DetectedEvents, instead of adding 50 default definitions to the 50 pre-existing calls to OnSpeechEvent, I can leave it unspecified in all those pre-existing stubs, and simply add 1 default 1 time in the ValidateDetectedEvent function. Not only will that 1 default apply to all the pre-existing stubs, but it will also be applied to all the pre-existing saved data for all the users who upgrade to the new version.

The ValidateObject logic is also used extensively throughout the oldversions.lua and related functionality to upgrade old saved data into the new format. It’s so powerful that declaring a new user option setting variable in SpeakinSpell.DEFAULTS.SpeakinSpellSavedData in loader.lua is enough to ensure that old saved data will be upgraded to the new version without even adding a new upgrade function to oldversions.lua, all driven by extensibility-minded and data-driven logic like this in ValidateObject and ValidateAllSavedData and related functions.

5.3.7. OnSpeechEvent(Detected Event Stub)

Once we finish validating the event stub into a complete DetectedEvent (de) object, we need to find an EventTableEntry (ete) that describes the user’s settings with respect to this event.

A very important data member of the de is de.key, which is the table key for this event in the saved data EventTable[de.key]. This key value is a unique name that describes the game event. Currently in 3.2.2.x I’m using key names composed of the event type, name, and rank. I expect that to remain the format forever because the type and name are enough to maintain uniqueness pretty easily.

Aside: Spell Ranks

The de.rank is optional, both in the stub, the de, and the de.key, because special treatment is given to the rank to support both ranked and rankless keys for spell events. Rankable spells have both a de.rankedkey and a de.ranklesskey because the user may have settings defined either way. An appropriate one of those keys is selected as the active de.key that’s being used to announce the event. See the code for specific details on the logic. The idea is to use the ranked key if possible, but the ranklesskey otherwise, if it exists, while creating options under “/ss create” to create new settings for either key.
The data structure design revolves around the ability for OnSpeechEvent to easily find an EventTableEntry by doing this:
de.EventTableEntry = SpeakinSpellSavedData.EventTable[de.key]

If it’s not in the EventTable, then it must be a new event that the user might want to create under /ss create, so we make sure the key also exists in SpeakinSpellSavedData.NewEventsDetected
5.3.8. Building the “/ss create” list – philosophy

Blizzard adds new spells, and changes the names of talents and procs all the time. It’s too much for me to ever manually maintain a complete list of all spells, buffs, procs, items, and everything that can possibly happen in the game, in tables defined in my code. Some way must be given to present the user with a way to select anything that can possibly ever happen in the game, in order to choose what to announce, but I can’t hard-code that list.

There’s not a sufficient API from blizzard to enumerate the list of all possible buffs, procs, items, spells, and other events that I might want to announce, so Blizzard hasn’t given me a way to ask or browse these things, and I’ll have to come up with some other GUI method.

The first version of SS used a text box to manually type the name of a spell. I thought that would be maximally flexible. It was case-insensitively compared to the spell name provided in the UNIT_SPELLCAST_SENT event notification. Simple. Easy. All I needed at the time.

But this was a problem for procced effects. As I added support for SPELLCAST_AURA_GAIN to announce procs, I discovered that procced effects have unexpected names.

My original solution to that was a checkbox option to “reported detected spell events” so I could see what name SS was seeing for a procced effect, so I’d know what to type in my text box.

After doing it that was a bunch of times, I decided copy-paste was an important feature. But there was no good way to copy-paste from the chat frame to my text box, and hold on a minute – I should just remember that name I reported, and put it in a list!

The drop-down list approach has the added advantage of advertising the features of SS to new users, so you don’t have to know what’s valid to type in the text box because a list is provided for you instead.

As the list has grown to include additional kinds of events, I have added search features to narrow down what you’re looking for.

If Blizzard ever provides an adequate API to make it happen, a nice future development would be to eliminate the NewEventsDetected table, and build the “/ss create” GUI from the API to be truly complete, instead of based on recorded history, so you could setup a SS announcement for an event that’s never happened to you before.
Short of that, it should be possible to enhance in a direction of prepopulating the NewEventsDetected table with as much as we can query from the API at this time, and increase on that bit by bit as any new APIs become available.

5.3.9. OnSpeechEvent summary

OnSpeechEvent (DetectedEventStub) creates a full DetectedEvent, searches for an EventTable entry and ensures this event’s key and related stub info is stored in the NewEventsDetected table to support the “/ss create” interface.

If there is an EventTable entry, then OnSpeechEvent passes the flow to SpeakForSpell to check the remaining logic whether to speak for this event, given it’s user options such as the frequency and cooldown, and which channel to use, and exactly what to say.
5.4. Chat Functions – How we speak

5.4.1. SpeakForSpell(DetectedEvent)
If OnSpeechEvent can find an EventTableEntry for this DetectedEvent, it will call SpeakForSpell(DetectedEvent).

This only occurs for events for which the user has defined options, which means an item in the EventTable, which is an important data structure storing all of the user’s main options for how to announce each event. These are the events listed under “/ss messages” and when you use the /ss create interface to Create New… what you are creating is a new entry in this EventTable.

It is the SpeakForSpell() function’s job to determine whether the options dictate to actually speak for this event under the current conditions, and exactly what to say.

5.4.2. AllowSpeakForSpell(DetectedEvent)
Is responsible for deciding whether this event should be silent under the current conditions, or whether we’re going to say something at all. See the code for details on the current logic and available user options.
5.4.3. Deciding what to say

If we’re allowed to speak, then the SpeakForSpell function picks a random speech from the EventTableEntry.Messages table, and passes flow of execution into the substitution engine in substitutions.lua and parser.lua to expand the substitutions and calculate exactly what to say. See section 6.2 <Substitutions> for details about how that works.

5.4.4. SayOneLine

Once the substitution engine has done its job, there are a variety of APIs we can use to send the chat into the chat frame. The SayOneLine function uses a data-driven table to match a channel name to a function that will say the text into that channel in the chat frame, using different APIs depending on the user’s selected channel option.

Note that SayOneLine will not split the text on line breaks, and any line breaks embedded in the “one line” of text may cause LUA errors.

5.4.5. Proprietary Self-Only Channels

The reason for the data-driven design of SayOneLine is mostly because of the proprietary channels like self-chat and self-only raid warnings. Each channel option has a function defined for it in the table. That makes it easy to add new channel options.
5.4.6. Chat Frame APIs

For reference purposes, I originally wrote the following info about the various APIs that I use for sending chat to the text, for the purpose of a discussion on Ticket #66 at http://www.wowace.com/addons/speakinspell/tickets/66-customized-chat-frame-colors/.

These code samples and explanations are taken from SpeakinSpell v3.2.2.10

5.4.6.1. SendChatMessage
http://www.wowwiki.com/API_SendChatMessage
-- SendChatMessage("msg"

--

[,"chatType=say,party,whisper,etc"

--

[,"language=nil,common,dwarvish,etc"

--

[,"channel means whisper target name or channel number 1,2,3"]]]);

This is the basic API available to send chat that is publically viewable, i.e. party chat, say channel, etc - chat that other people can read besides you.

Clickable links like <spelllink> are generated from escape sequences embedded in the "msg" These escape sequences are like "|uilarfhljadnglkdjb" not human-readable codes for actions or modifications to the way text is displayed. It's like the equivalent of WoW performing <substitutions> on the text using a different syntax than SpeakinSpell.
Color coding a single word in a sentance of text also works off escape sequences, but that's not allowed in public channels like party, say, general, etc, that people other than you can read. You can't spoof chat channel colors for others. It throws a LUA error if you try IIRC.

Any instance of the | character begins an escape sequences. I have not been able to figure out yet how you print the | character itself, though something automatically happens with it if I type it into a speech via the SS GUI IIRC. More testing/investigation should be done in this area.
In general, an invalid, unrecognized, or disallowed escape sequence in a SendChatMessage call will give you a LUA error.

Escape sequences that generate spoofed links will get you DC'd, as will line breaks.
So you have to be pretty careful in the way you use SendChatMessage, and there are limits.

Note how color is not a parameter and there is no way to control it here. It will go by the receiving player's color settings for their chat frame and the selected chatType and channel parameters used.
5.4.6.2. RaidNotice_AddMessage
Doesn't have a page on wowwiki. I got this function from a code sample in DBM.

This function generates the self-only raid warning.
function SpeakinSpell:SelfRaidWarn(text)

-- show the line as a raid warning style popup that only I can see

-- this is EXACTLY the same as a real raid warning

PlaySound("RaidWarning") --RaidNotice_AddMessage doesn't play sound

RaidNotice_AddMessage(RaidWarningFrame, text, SpeakinSpell.Colors.SELFRAIDWARNFrame)

end

RaidNotice_AddMessage bypasses SendChatMessage("/rw") to add text to your actual raid warning frame.

'RaidWarningFrame' is a global defined by Blizzard (apparently). It's a frame window object, which is borderless, and non-draggable, usually invisible and completely transparent to clicks. It controls the position, size, and font of all raid warnings - the real kind, generated with "/rw move!".

'text' is the text of the speech, and may include color code escape sequences. Should be able to include links too.
'SpeakinSpell.Colors.SELFRAIDWARNFrame' defines the color.

SELFRAIDWARNFrame = { -- raid warning color ff-db-ad defined as floating point numbers

r = (255/255), --ff

g = (219/255), --db

b = (173/255), --ad

},

I determined that value from experimenting with a color picker and dumping the RGB values to the chat frame until I picked a color that looked right ... it should definitely be replaced by the actual return value of ChatTypeInfo["RAID_WARNING"];

Note there is one point where it does not match EXACTLY because I can override the color in 2 ways, unlike if I SendChatMessage("/rw")
5.4.6.3. DEFAULT_CHAT_FRAME:AddMessage(text)

http://www.wowwiki.com/API_MessageFrame_AddMessage
DEFAULT_CHAT_FRAME is a global defined by blizzard which is the frame window object where your chat shows up.
This adds a message directly into the chat list shown in that window.

The "SpeakinSpell channel" used for self-chat and system messages is based on this function
function SpeakinSpell:Print(message)

-- Overriding AceConsole-3.0:Print to use localized addon name instead of tostring(self)

local text = tostring(SpeakinSpell.Colors.Channels.SPEAKINSPELL).."SpeakinSpell|r: " .. tostring(message)

DEFAULT_CHAT_FRAME:AddMessage(text)

end

Note how the color of the word SpeakinSpell is controled by a color-code escape sequence appended to the text. "|r" returns it to the default color, white (actually it's probably defined by a chatType, maybe "SAY"?)

This API provides the most extensible well of new SS-driven channel options such as Boss Whisper.
The full parameter list is

AddMessage(text, R, G, B, ID, FadeTime)
R,G,B
The full parameter list includes a color code, so we can set any color code we want.

ID
You can also pass a chat type ID which causes it to use the same color as that chat type - so rather than pass the color retrieved from chatType["CHANNEL_NAME"] we could pass the ID returned from chatType["CHANNEL_NAME"]

· I assume that if you pass an ID, then the chat filters also apply, and unselected chat types will not show up in your window

· A good question is whether this ID can be used to purposefully send a SS speech to the combat log window, or other custom chat frames, by specifying the chat type ID

· The question of adding SpeakinSpell channel colors to the chat frame's color picker is most likely an issue of defining additional chat type IDs - probably not possible, but blizzard did add tons of stuff for addons to be able to do, so maybe there's a way

FadeTime

You can also specify a fade time which I assume only applies to certain frames - I haven't tried it on DEFAULT_CHAT_FRAME, but I did experiment with it for self-only raid warnings off that frame. This code sample shows a demonstration of showing an error message on the screen for 5 seconds

UIErrorsFrame:AddMessage("Testing", 1.0, 0.0, 0.0, 53, 5);

Note there are more global message frames like UIErrorsFrame, DEFAULT_CHAT_FRAME, RaidWarningFrame

5.4.6.4. ChatEdit_SendText(SpeakinSpellTempEditBox)

http://www.wowwiki.com/RunSlashCmd
This API is the basis for being able to execute slash commands such as "/wave". I adapted the code on the wowwiki page linked above into the following code fragment.

-- create a hidden edit box to parse and send the slash command

if not SpeakinSpellTempEditBox then

SpeakinSpellTempEditBox = CreateFrame("EditBox", "SpeakinSpellTempEditBox", UIParent)

SpeakinSpellTempEditBox:Hide()

end

-- send the command

SpeakinSpellTempEditBox:SetText(text)

ChatEdit_SendText(SpeakinSpellTempEditBox)

What this does is create an invisible chat entry box just like the one that appears when you hit ENTER or /, except it's never visible.
ChatEdit_SendText sends text THROUGH that invisible chat input box in a way that it gets parsed and executed as if you had typed it yourself, or written it into a game macro (/m)

This will also be the basis of the "Default" channel planned by ticket 77 Channel = [Enter Key]
If you try to use escape sequences in the text in this case, it will come out as if you typed it - verbatim - not processed like an escape sequence, i.e. for color coding, or putting in links.

There's a /script command you can send through chat this way to create a link to an achievement or spell - Meneldil used it as a work-around to a problem he was having linking things in chat for a while - if I understood him correctly - but I'm not sure what the syntax is.
6. More Functional Areas
The major flow control chapter 5 does not cover every functional area of the addon. Other functional areas worth documenting include the following, in no particular order.
6.1. Localization

See section 4.2.3 \Locales\ for the structure of the Locale data definition files.

The philosophy of localization is to maintain support for as many (unknown) languages as possible. Anything that is bound to text or language is defined in a file under the Locale directory, including grammar.

6.1.1. L[“string”]

The code style uses a WoW LUA standard practice to define the localized text in a table called L[] where L stands for Locale, though I can’t help but note that it also mirrors the way C++ authors might declare a Unicode string as L”string” where that L stands for Long, meaning a 16-bit value, but is conveniently also read as Locale.

The L[] table in SpeakinSpell is actually not just a simple table. It’s an AceLocale-3.0 addon object with slightly better functionality than a simple LUA table, implemented by one of the embedded \Libs\.

6.1.2. AceLocale

I get the following functionality out of AceLocale

1) It looks up the user’s game client locale to load the correct table for a German or Korean, etc.

2) It does the logic to default to the enUS version if locale data for the current locale is otherwise unspecified

a. This logic is enabled/controlled by passing a ‘true’ value to the constructor of the enUS locale table, to set it as the default. For debugging, or if a non-English speaking programmer ever takes over primary development, it’s possible to change which locale table is the default.

3) The AceLocale L object includes an advanced LUA trick that they do to override the meta-table function that gets called for L[“string”] so that it assumes the enUS version of L[”string”] = “string” without making me declare that in Locale-enUS.lua.

a. Future Plan: as of this writing in v3.2.2.x, one of my longer-term goals is to eliminate the Locale-enUS file entirely in favor of this feature that I activated several releases ago that assumes that any missing key value in L[] is the key itself.

The L[] table and Locale-xxXX.lua files were getting too large to easily maintain, so I broke them up into additional files which use separate tables. DEFAULT_SPEECHES, BIGREDBUTTON, and HELPFILE are all AceLocale tables with the same format and functionality as L[].

6.1.3. Default Speeches

The default sample event announcement speeches use an optional content pack data structure mechanism implemented in templates.lua.

Since the content packs are optional, they don’t have to be translated.

Default Speeches also have an issue with localization that the humor of a joke is easy to lose in translation. Many of the favorite jokes people like to use in their SpeakinSpell speeches, and at least in my own style in the default speeches, are based on pop culture references which are likely to not make any sense at all in another culture and another language in a foreign country. Would a Frenchman understand Parlez a la main? (talk to the hand) Maybe, but it seems doubtful.
So the default speeches in DefaultSpeeches-xxXX.lua are not intended to be translated verbatim. Nothing is, really, everything should be translated in spirit to label everything as intuitively as possible for the target language and culture.

Aside: Brevity is the soul of wit

The localization process into both German and Korean were extremely valuable to refining the GUI labels and tooltips in the native English as well, because concise and brief text is both easier to translate and easier for end-users to understand.

I have a personal tendency to write overly verbose labels and tooltips into the GUI because I want to thoroughly show off the full power and intended usage of all the features. The help file has been a tremendously helpful outlet for that, but translators remain invaluable to the review process needed to polish all of that text into the best possible state.

6.1.4. User’s Guide

The user’s guide in help-xxXX.lua supports a flexible framework to completely reorganize the information in order to present it in the most understandable format possible for the target culture and language.

This help-xxXX.lua document is intended to describe absolutely every possible feature and application of the addon, with the most detailed instructions necessary for the most ignorant newbie. It is typically updated in every new release that contains an added feature, to describe how to get to that feature and use it, and what it does.
So far with the Korean and German translators, we’ve found it easier to keep them closely synchronized. As I add features and document them in the user’s guide, I can easily find the relevant place to add some new English text to a help file that’s in a language I can’t otherwise read or understand a single word of it. I can at least find the right chapter this way.

However if a translator came along who wanted to make use of the flexibility I coded into the help system, I would not object. I would just ask that they keep up on the translation directly in SVN to watch for my changes and proactively describe them in their thoroughly modified help file, to save me from having to hand-hold them through it (which is not a problem with the synchronized method I have used so far with leXin and troth).

6.1.5. Grammar

Knowing that I know nothing about many of the world’s languages, I take a very thorough approach to the way I arrange the syntax of <substitutions> features, and the underlying implementation, with both grammar and localization in mind.

6.1.5.1. Pronoun Forms

Pronoun Forms for gender and personal pronouns to avoid talking about yourself in the third person are explicitly designed to make the end-user specify the pronoun text verbatim, so that I could avoid defining the logic or locale text data that would otherwise be needed to correctly determine the right pronoun form in context in the sentence. Just think of the George Harrison song “I, I me my mine” and it becomes clear there are many versions of all of these pronouns.

Other languages have different tenses, different word forms, different grammar rules, and I don’t know most of them.

To make it worse, a role-played character might intentionally use bad grammar, or culturally accented text, like da Jamaican trolls, mon.

Working around the unknown forced me to put it on the end-user to use their own knowledge of their native language to use the pronoun word forms that sounds right (or whole phrases: spaces are allowed) between I, me, my, mine, myself, he, his, him, and so on.
6.1.5.2. Possessive Forms

Stonarius’s Magic Strudel really bugged me after a while. And I liked that when I changed my name from Stonaria to Stonarius, I was glad I had left my speeches written with <player> as a substitution, instead of hard-coded, because SS picked up my name change that way! But the incorrect grammar of Stonarius’s drove me crazy after a while and I had to write the function…

The logic that checks whether a name ends in ‘s’ to add just an apostrophe, or apostrophe-S, struck me as no way around it but to create a \Locale\grammar-xxXX.lua file to encapsulate the logic, primarily because there’s already a Korean translation that uses completely different letters where there’s no sense in even checking for an ‘s’ character that would never be used. But it also occurred to me that French doesn’t use the apostrophe-S form to connote possession either, even though they use the same roman letters as in English, instead of “Noun’s thing” they say “the thing of Noun” (le thing de noun) and there again, the apostrophe-S logic doesn’t apply.

So even without knowing exactly how possessive forms work in any language other than English and French, I know it’s going to vary, so this logic – the algorithm - is going to require localization, not just the text data.

From a desire to make this extensible to translators, the MakePossessive function is used both directions. It gets executed on the sk.key substitution key name to see if a possessive form was used in the <target’s> user input specification, in order to decide whether to make the result possessive as well. That creates a small hook for a translator to define the related logic for their language, without a need to understand or modify the substitution engine.

At this time, the active logic aspects of the localization framework have never been tested, because only the enUS grammar exists. I suspect that German and Korean don’t need it, as in French “de <target>” does not require special parsing or substitution logic in the substitution engine the way “<target’s>” does in English. Troth quit the game, and leXin has been busy with school for months, so I have not discussed this topic with them either.
6.2. <Substitutions> Engine
LUA offers a powerful string parsing and pattern matching function, string.gsub, which is based on LUA patterns which are basically the same thing as regular expressions.

SpeakinSpell uses string.gsub to identify a relatively simple regular expression that captures any text between angle brackets <> . It’s an elegantly simple function because of the power of string.gsub, so it’s worth copy-pasting it here

-- search for substitutions and replace them with values

function SpeakinSpell:FormatSubs(msg, DetectedEvent)

--self:DebugMsg("FormatSubs",msg)

return string.gsub(msg, "<(.-)>",

function(var) --<var>

return self:DoSubstitution(var, DetectedEvent)

end

)

end

The value of “var” in that function is “target” not including the angle brackets that mark it around “<target>”.

It may also be an advanced formatting string such as “target’s*male*female|me” so the DoSubstitution function is a bit more complicated.

6.2.1. Parser.lua – parse the input parameters

First it calls into parser.lua to parse the string into a “substitution key” object (typically a variable called sk) which is a table separating the elements of a complex formatting string.

Sk.key is the main variable name, “target” in this case. Other members of sk (sk.otherstuff) define the male, female, possessive, and third person options. Whether or not those forms will be used doesn’t matter to the parser.lua module, which only cares about parsing for the * | ‘s and similar parameters specified by the user in the input data.

The key job of the parser is to pick out the sk.key value from the rest of the parameters. The rest of the substitution engine in substitutions.lua relies heavily on the substitution key, sk.key.

6.2.2. substitutions.lua – return the substituted text

After the parser creates the sk, the flow goes to substitution.lua to decide what the final text should be for this substitution.

In essence, the substitution key sk.key is used as a table key to run a function to find the value of the requested substitution, as in “return SpeakinSpell.SubstitutionFunctions[sk.key]();” but it’s a little more complicated than that.

There are actually 4 passes at different tables that might contain a function or value for the sk.key, searched in this order:

1. The DetectedEvent object: de[sk.key]

a. Next we check the CurrentEvent object, if we’re in a recursive /ss macro call and the current event (the macro call) defines something the parent event does not
b. The point of doing this first is to allow each event to override the value of any substitution key.
2. Blizzard’s API: UnitName(sk.key)

a. This covers built-in unit names like target, focus, mouseover, etc.
i. Target, caster, and some other info are defined in the event object, so we won’t actually get this far with UnitName(“target”) because that gets special handling

b. Supports partyN, arenaN, raidN

c. Supports pet and target suffixes to all those

d. I put this before SpeakinSpell.SubstitutionFunctions mostly to reserve all of the unit names supported by the blizzard API, because there are a lot, especially because of the pet and target suffix logic it provides.
i. Also so that equivalent functions that I define in SpeakinSpell.SubstitutionFunctions can rely on an pre-input condition that UnitName(sk.key) returns nil or an empty string, so don’t even bother trying it here
3. Function lookup from SpeakinSpell.SubstitutionFunctions[sk.key](de);
a. This table is a very large piece of substitutions.lua defining the values of all substitution key names that are not blizzard-defined unit names.
4. A random entry from SpeakinSpellSavedData.RandomSubs[sk.key]
a. Users can create new lists in this table for custom-defined substitutions that pull a random value from a list (the Mad Libs feature)
The substitutions engine also performs the additional logic to check whether male, female, first person pronoun, possessive, or any other special form should be used instead of the value returned by the SpeakinSpell.SubstitutionFunctions[sk.key] function (if related data is found in the sk, as specified by the user in between the <> in the speech data input).

6.2.3. How to add a new substitution variable

In order to add a new substitution, all that should be necesssary is to add a new function to the SpeakinSpell.SubstitutionFunctions table in substitutions.lua. The table key is the variable name, and the function describes how to find that value. Simple.

The additional logic to apply possessive forms and parse for pronoun forms, etc, is encapsulated away from this to simplify adding new substitution key variable names like target, caster, player, pet, etc.
6.3. Patching old saved data

OnVariablesLoaded we will typically call ValidateAllSavedData. This will call into the various FixOldSavedData functions defined in oldversions.lua.

The architecture of this system uses a table to declare an ordered list mapping version numbers to patch functions called FixOld_Version_Description (ex. FixOld_31207_UpdateEventKeys is a function to update the event keys which were changed in v3.2.2.07)
The FixOldSavedData main function will compare the current version of the SpeakinSpellSavedData.Version to the available patches, and run all of the patches that apply, in the correct order, depending how long it’s been since this player updated the addon.

When the data structures in the SpeakinSpellSavedData must be changed to support a new version of the addon, it may be necessary to add a new FixOld function to oldversions.lua and add it to the list of patches.

Some general functionality exists to mitigate the need for adding new FixOld functions by using the ValidateObject functions to ensure any new/added data items are created with defaults. That covers a lot of the cases of adding new features to the addon if the only change to the saved data was that you added a new data member, all that’s necessary to upgrade old data is to declare a default in SpeakinSpell.DEFAULTS in loader.lua, and the general version-agnostic functionality of ValidateSomething functions in data.lua will create appropriate defaults for new features in old saved data files, without the need to apply any patches from oldversions.lua.

A FixOld patch function is only needed if
· the pre-existing data is changed in some way (for example when the event table keys were enhanced to include the event type string, to allow for different event types with the same spell name, i.e. receiving a buff vs. casting that spell),
· or if you want to infer the setting of a new variable from the setting of an old one (for example when I wanted to add the party leader channel option as a copy of the pre-existing option for being in a party before the leadership role could be identified, to preserve legacy behavior for existing users’ settings)
6.4. The Big Red Button Easter Egg
The Big Red Button is an easter-egg hidden feature that I added to SpeakinSpell as a joke. The release note for this feature in the changelog.txt says that a demon has invaded SpeakinSpell, and warns you to watch out for him.
WARNING: this chapter of the SDD contains spoilers that reveal the game, tell you where to find the easter egg, and ruin the surprises of the big red button. Do not read this if you want to look through SpeakinSpell to try to find it on your own first.

Google for the Big Red Button. It’s a flash game that appears on several websites. I am not sure who originally created it. In this game, there is a large red button which says “NO NOT PRESS” so naturally, the idea is to press the button.

Each time the button is pressed, the text label by the button changes. At first it says “*Ahem* NO NOT PRESS” then grows angrier and trickier trying to stop you from pushing the button, and eventually evolves into an intriguing story.

The ending of the game – sorry to spoil it – is that the story wraps around. The button explains that he/it was in a house, and he opened a box, and inside the box was a button, and it said DO NOT PRESS. And it goes back to the beginning in a natural progression that you can easily go a good dozen moves or more past the wrap-around point before accepting that it’s finally over, and wow that was cool LOL.

\Locale\BigRedButton-enUS.lua defines a list of speeches that tell a completely new original story that I wrote, inspired by that game, (a derivative work isn’t really a rip-off is it?? :P) but making use of SpeakinSpell features to support an equivalent easter egg within the addon.

Each line of the text array is passed through the SayOneLine function, using the Mysterious Voice channel, so that pressing a hidden button proceeds to copy this array into the chat frame one line at a time, so the player can experience the semi-interactive story.

OnSpeechEvent is not used because I don’t want this feature to appear in the Create New or Message Settings interface. Similar to advertisements, the list of speeches in this case is intentionally hard-coded and non-configurable to the end-user. Also, OnSpeechEvent does not yet support a “go in order” feature to tell the story and play the practical joke on the player in the correct order through the array. That’s why it goes directly to SayOneLine, which does the substitutions and easily routes us to the correct chat frame APIs.

To find the big red button in SpeakinSpell, go to the general settings screen (/ss options) and notice that there’s an unnecessary scroll bar on the right. All of the options fit on the screen with no apparent reason to scroll down, yet there’s a scroll bar. Scroll down. You’ll see a lot of blank space. Weird unnecessary scroll bar - what’s this addon dev’s problem making a mistake like that? But go all the way down to the very bottom and you will see a button labeled DO NOT PRESS THIS BUTTON. Press the button a few times and look in your chat frame.
The web-based flash game Big Red Button uses the power of flash animation (dun dun DUNNNN) to trick you with moving buttons and big fields of many buttons where only one is the devious one you have to click. That kind of thing is not possible in SpeakinSpell, but there are SpeakinSpell things that are possible.

So the SpeakinSpell Big Red Button uses SpeakinSpell features, fully adapting the Big Red Button flash game idea and spirit to the WoW game addon genre (canvas? Paradigm?).
· calls the player a <randomtaunt>

· makes fun of the player’s <guild>

· and arena teams

· tells them they’re the worst nub on <realm>

· passes the array index to SayOneLine as event-specific data in DetectedEventStub.line to count clicks and say “I can’t believe you’ve clicked me <line> times already. What a loser”

· makes the player do voice emotes like /yawn, so it can reply “./yawn, yes I’m getting sleepy too, maybe you should stop clicking”

· it may be possible that /cast could be used since a button push is activated

· makes references to WoW game mechanics

· the idea that clicking this button is holding up the raid

· the idea that clicking this button very many times will give an achievement and/or epic loot

· suggests that the player has a key binding or some customized-UI method of activating the button, in order to clarify the instruction “do not press”

· makes you grind a bunch of clicks in a row with no result at all, in satire of rare drop scenarios and long rep grinds

6.5. The Advertisement Feature (/ss ad, ads.lua)
6.5.1. History

I overuse this addon enough that I get asked “what addon do you use for that?” enough times that I wanted a canned macro response, of course, so I created /ss ad to spam a hard-coded macro and the URL.

My German translator, leXin, had been advertising the addon heavily to his guild and friends as an enthusiastic end-user, and quickly embraced this feature, asking for tighter control over who he said it to, so he could whisper, or use a different channel than the default “biggest group you’re in” channel. So I added /ss ad /w, /p /ra, etc. to make it more flexible.

Then I realized I was passing up a key feature of SS by using only a single speech, so I expanded the ad text into an array of several different speeches, trying to be funny. Much later, I stayed up all night one night inspired to write about 50 more ads, so it’s a fairly large list at this point.

6.5.2. Current Status (3.2.2.12)

The implementation at this bypasses speech.lua and goes directly to the substitution engine with a shortcut to FormatSubs, and then a direct call to the SendChatMessage blizzard API. I’d like to wrangle it into a more generic call to OnSpeechEvent like the /ss macro event that it basically is, or at least SayOneLine more like the Big Red Button implementation, the point being to share as much of the speech and substitution engine functionality as possible.

As of this writing in 3.2.2.12, having used the feature a few times since that round of adding 50 ad speeches, I find that list needs some work. Some of the ads are not obvious that it’s an ad from the addon that you just asked me about.
I have also always considered moving these ads into the saved data and allowing the end-user to change them, but have always been on the fence about it.

Aside: how to make ads user-configurable

The obvious way to go about this would be to change “/ss ad” to “/ss macro ad” but some features would be lost like “/ss ad /w name”. Some alternative equivalent features could be made to replace them through other planned enhancements, like the combat whisperer feature, such as an auto-reply to someone who whispers you with “/ss macro ad” or something like that. Or /ss macro syntax or options GUI settings could be enhanced to support the same kinds of overrides as /ss ad /w name, /ss ad /p, and /ss ad /ra.

Aside: why not to make the ads user-configurable (stolen credit story)

The very first program that I ever wrote was a simplistic but very addictive betting game for the TI-85 graphing calculators that we used in high school. It was called Russian Roulette. It randomly selected a number 1 to 6 (which chamber the bullet is in), and your job was to try to double your bet by pulling the trigger as many times as you wanted up to the unknown selected random number without going over. You got 3 lives to go over the limit, which could occur on the first shot. It kept track of high scores. Great time killer during boring lectures. Well it was open source and someone graciously created really nice graphics for it showing each time you got shot – great drawings of a head disappearing in thirds LOL gruesomely – but they also replaced my name with theirs, robbing me of all credit. That really annoyed me, and it comes to mind when I consider making the ads used configurable, because that’s one of my chances to take visible credit with the Stonarius name, and I’d rather not see someone put in <player> instead. I doubt anyone really would do that, and I have plenty of credit in secure places like the project website that are unlikely to be hacked, I just felt like writing down this story since it always comes to mind when I consider this feature area. Always. It’s weird old memory like that.

Aside: Random Tip #x

Many of the ads that I wrote (as of 3.2.2.12) are meant to sound like random pages from the book of things that shouldn’t have to be said: don’t break the sheep, let the tank get agro, etc. Some are random tips about features of SpeakinSpell: it works for any class, you can configure it for different settings, it can auto-greet your guild when you login. There is an opportunity here to break these up and expand on similar built-in random macro things like /ss ad, but instead of ads for the addon, it could be a story like the big red button, or a random tip for noobs, or … creative options abound.
6.6. Default Speeches, Templates, and Content Packs
6.6.1. Modularization, Terms, and Data Structures

The \Locale\DefaultSpeeches-xxXX.lua files define all of the default sample speeches and content packs – the content data.

Each content pack is a data structure called a Template, which are implemented and processed mostly by functions in templates.lua. All of the Template objects that are declared in DefaultSpeeches-xxXX.lua live in DEFAULT_SPEECHES.Templates[Template.key] = Template.

The functions in templates.lua process this data, using a working copy of the active templates in the table SpeakinSpell.DEFAULTS.Templates. Some additional auto-generated content is included in SpeakinSpell.DEFAULTS.Templates which can’t be hard-coded in DEFAULT_SPEECHES, such as RandomSubs and speeches using the player’s guild and arena team names.

6.6.2. Template Objects

All of the default speeches that are used on a fresh install are content packs in the same data format as the additional optional content packs that are also provided: Template Objects. The difference between a default content pack, and an optional one, is defined in attribute data in the Template.Attributes table which declares whether this content pack should be used by default, and whether the content is intended only for a specific race and/or class.

Template.Content can optionally contain either a RandomSubs table, and/or an EventTable, which parallels SpeakinSpellSavedData.RandomSubs and SpeakinSpellSavedData.EventTable.

6.6.3. Merging Data
Templates must be cumulative in nature to support importing a single new speech to an existing EventTableEntry object that contains precious end-user data. The same is true for RandomSubs lists.

Templates.lua is unexpectedly large and complex because it defines functions to merge subsets of Templates at every level into existing events, for individual sub-table, while also preventing duplication, and filtering the data by what applies to your race/class, and potentially additional Template.Attributes.
6.6.4. Related GUI (/ss import)

The Import New Data GUI is also heavily supported by templates.lua, which is responsible for weeding out all of the redundant content that is defined in DEFAULT_SPEECHES, but already used, so not valid to import.
In 3.2.2.12 this is currently done by copying the entire DEFAULT_SPEECHES.Templates table into SpeakinSpell.DEFAULTS.Templates, and then deleting inapplicable content from SpeakinSpell.DEFAULTS.Templates by passing it all through a series of tests for applicability for different Template.Attributes like race and class, and a search and destroy for redundant content that’s already in SpeakinSpellSavedData, and then a cleanup of the resulting empty tables.

The GUI then offers buttons to import the data as a group at many levels, mostly because I originally expected a series of prompts “do you want this new content? Yes/no” and I couldn’t decide which was the best point to say “yes to all” so there are hierarchical groups in the GUI, with supporting functions in templates.lua to import subsets of the content at various levels.

While content is imported from SpeakinSpell.DEFAULTS.Templates into SpeakinSpellSavedData, it is deleted from SpeakinSpell.DEFAULTS.Templates to maintain the rule that SpeakinSpell.DEFAULTS.Templates does not contain any content that’s redundant with the speeches that you’re already using.

The various delete/hide buttons in the Import GUI also delete from SpeakinSpell.DEFAULTS.Templates
The Search For New Content button repeats the process of copying DEFAULT_SPEECHES.Templates into SpeakinSpell.DEFAULTS.Templates and then deleting the undesired content as it did before.
A first time load on a new install, compared to a Search For New Content button press, the only difference is a conditional check for a Template.Attribute.Default = true or false. The rest of the logic is the same: avoid redundancy and check for appropriate race and class.

Aside: the original hard-coded default speech data in RAM

Note that DEFAULT_SPEECHES.Templates is left unchanged and remains forever in RAM completely in-tact and exactly as hard-coded in DefaultSpeeches-xxXX.lua.

The reason for this is to forever support a call to “/ss reset” at any time (because that’s the easiest thing we can do).

However, this is a very large data structure that should preferably be loaded on-demand, and unloaded the rest of the time. As the quantity of content in these content packs increases, the more important it will become to find a way to unload the default speech data except as needed. The wowace.com tickets page is a more appropriate place to brainstorm the options than this SDD.
DEFAULT_SPEECHES is an AceLocale embedded library LibStub addon object, so that may improve its memory efficiency in some way that I don’t know. It would be worth investigating. It’s a practice I picked up from copy-paste of other addon architectures, and reading documentation on wowace.com, not that I have any true understood reason to use.

6.7. Options GUI Architecture

6.7.1. Overview

The Options GUI rides on the framework of the Blizzard Options Frame (in-game: hit escape, go to interface options, select the Addons tab).

This interface is defined in source code data table definitions and driven largely by the WoWAce Libs as a wrapper around the Blizzard Widget APIs.

A primary design goal is to keep the GUI logic isolated from other functions of the addon, and ideally any GUI layer should be as thin as possible, so that the power of the addon lives in underlying, more easily-recycled code modules (all the files in the root directory)
6.7.2. Source Code Organization

Each file in \gui\ defines and implements one screen of the options GUI, except for gui.lua which includes entry-points and shared GUI utility functions, and minimap.lua which implements the minimap button.

Each screen of the options GUI (the \gui\whateverscreen.lua file) has two basic parts to it: a table at the top of the file declaring all of the widgets on the page, and then a group of functions that implement the get/set/onclick kinds of functions behind those widgets.

The table declarations defining all the widgets should be self-explanatory, though tricky to understand all of the available options and limitations provided by the WoWAce libs.

6.7.3. WowAce Libs

The table format is defined and processed by the wowace libs. The data structure of that table and its related framework in the wowace libs is very powerful, and easier to read and write than frame XML, so I find it well worthwhile.

The down side is that the documentation of those libs is somewhat weak on the wowace.com site, so I learn and research it by searching the code of other addons, frequently Omen and Recount because they both use the same wowace libs for their options GUIs, and include samples of most of the different types of widgets for how to declare and support them. I also frequently investigate the source code in the \Libs\ directory with global searches to find out how a particular option declaration from the table is implemented in the underlying framework.

The Ace lib framework also provides a nice self-refresh system that understands to refresh the display in an efficient way when any user option is changed. “Hidden=function() return a condition end,” is a powerful declaration crossing data with logic in an elegant way to clearly describe when to show/hide different widgets in the GUI. Similar data = function definitions also make it easy to provide dynamically-labeled controls.
6.7.4. Blizzard API Widgets

The Widgets exposed through the WowAce table’s type=”widget type” declarations are all widgets that are ultimately defined by Blizzard’s API, and can also be used as the type=”widget type” in a frame.xml file that you implement without wowace. The Ace libs simply wrap the blizzard widget APIs with a little bit more user-friendly data-driven code style for me.

It is possible, and in some places done in the SpeakinSpell code, to work around the wowace libs by calling directly to the blizzard API for the appropriate widget function.

6.7.5. SetLastPageViewed and “/ss toggle”

One limitation of the wowace libs is that you are not allowed to add your own data members to the table, or it will throw an assertion failure complaining about an invalid data item in the table. It’s an understandable malformed input data kind of error detection, but it’s still frustrating.

There is also no initialization hook that I know of when it loads the page.

So in order to remember the last page viewed, or perform any “as late as possible” kind of late-initialization procedure, one must create a side-effect in one of the supported data = function() declaration in the GUI screen definition table, as in the following code fragment:

Caption = {

name = function()

RunSomeSideEffectFunctionOnLoad();

return “the name”;

end,

}

That is how we must call SetLastPageViewed in order to know which page to open from “/ss toggle”. The side effect function is called more often than would be optimal because it’s every time the page is refreshed/repainted, as opposed to one time on initial load which would be the ideal time, but the speed hit is not noticeable. It just has to be a consideration for how the side-effect function is implemented, knowing that it will be called repeatedly.
6.7.6. “/ss screen-name” implementation

The Blizzard API used to open the options frame to a specific page, InterfaceOptionsFrame_OpenToCategory, takes a single parameter specifying the page name that shows up in the tree view on the left side of the interface options frame, where it lists all of the addons and their sub-categories of options screens.

This presents us with the significant problems that A) the screen name identifier we’re opening to is localized (when ideally it should be a code identifier, not an end-user visible text string) and B) it has to be unique.

The real trick is the uniqueness. If we name one of our options GUI strings “Colors” because we know it appears as a sub-heading under the category “SpeakinSpell”, but another addon has also defined a sub-category called “Colors” alphabetically above us in the list of all loaded addons with options frames… OpenToCategory(“Colors”) might open their screen instead of ours.

That’s why the names of these sub-categories sometimes include the word SpeakinSpell redundantly.

6.7.7. Data Synchronization of GUI page names
The following code sample shows some of the declaration of the Create New GUI widget layout. At a high level, this screen has 2 names: the code ID name of the object, SpeakinSpell.OptionsGUI.args.CreateNew, and the user-visible title of this frame, L[“Create New…”].

SpeakinSpell.OptionsGUI.args.CreateNew = {

order = 3,

type = "group",

name = "unused_CreateNew_name",

desc = "unused_CreateNew_desc",

args = {

Caption = {

order = 1,

type = "header",

--name = L["Create a New Speech Event"],

name = function()

SpeakinSpell:SetLastPageViewed("CreateNew", L["Create New..."])

return L["Create a New Speech Event"]

end,

},

Those two names must be synchronized with the names used in the following places (and is case-sensitive).

Note that the name of the object CreateNew must be specified un-localized as “CreateNew” because it’s a table key code ID name, whereas the name L[“Create New…”] is localized text that can be seen by the end-user. Both names are used for different purposes, depending on the limitations of the blizzard and wowace frameworks.
· the names passed to SetLastPageViewed in each of the \gui\screen-name.lua files

· to support /ss toggle

· \gui\gui.lua references the page names in several places

· the ShowSomething functions which wrap calls to InterfaceOptionsFrame_OpenToCategory for each available category
· the parameters passed to the AddToBlizOptions list in CreateGUI

· The list of all frames in RefreshAllFrames

· The slash commands to open the options GUI to this page, such as “/ss create” and “/ss import”
· slashcommands.lua contains a table mapping each command like “create” to its associated ShowSomething function in gui.lua

· The input text for “create” or “import” is localized in \Locales\Locale-xxXX.lua and stored in the L[] table.
· Related matches are required for the name of the object defined as SpeakinSpell.OptionsGUI.args.ObjectName.

· Typically that ObjectName.name = the same L[“Title”] but this name value is not actually used anywhere that I can see (though I suppose it may be useful to define if you ever want to move it to a further sub-category where it might start to get used)

6.7.8. Color-Coding in the GUI = escape sequences
Any GUI label or tooltip can embed escape sequences in the text strings to change the color of a portion of the text. “|caarrggbb” change the color to the RGB red/green/blue (and aa=alpha) color value specified as hex numbers 00 to ff. “|r” returns to the default white.

I believe additional escape sequences exist to alter the font and possibly other special text formatting controls, but documentation on this aspect of the blizzard API and/or LUA programming language are hard to find.
In some cases, these escape sequences are hard-coded into the locale files. In others, they are generated at runtime by looking up user-specified color codes and formatting them into the appropriate string escape sequence format “|caarrggbb”

Color-Picker GUIs widgets, and some other blizzard APIs such as showing a self-only raid warning, use a different data format for specifying the text color: a table with members t.a, t.r, t.g, t.b. The a,r,g,b values in this table are floating point numbers between 0 and 1, representing the fraction of intensity of that primary color between 0 and 255.
To put it another way, conversion from that table format into a string escape sequence is as follows: string.format(“|c%02x%02x%02x%02x”, t.a*255, t.r*255, t.g*255, t.b*255)

Aside: Invalid Escape Sequences

Along those lines, I also find it frustrating that I can’t find information about how to unescape a string that contains an escape sequence like this, in order to dump it in a debug message, and especially to become safe from invalid escape sequence errors.
Invalid Escape Sequences will throw LUA errors if passed to SendChatMessage, probably because it looks like attempting to spoof the color of text in party chat, which is another reason I’d like to know how to unescape the ‘|’ character, to make SayOneLine safe from that potential LUA error. I’d rather the user see an output error containing an unescaped escape sequence like “|cff001213aa” instead of a popup LUA error if I make a mistake along these lines when changing the code.

Ironically, user-entered text from the speech input boxes in the message settings are somehow automatically escaped if you type a ‘|’ character there, but it is still impossible to dump the contents of the raw string from RAM in order to see how that’s done, because that process re-escapes it so it will print. I have done experiments with C-style “\|” and the intuitive-to-a-programmer style of doubling it as “||” but neither attempt worked. The only safety function I have been able to come up with is to use string.gsub to remove all instances of the ‘|’ character.

6.7.9. Minimap Button / Lib Data Broker

The minimap button is very simple thin code in SpeakinSpell, provided mostly by a pair of embedded libraries: LibDataBroker and LDBIcon.

LibDataBroker enables addons to create a data broker object that can relay information between all interested addons who want to monitor the data broker’s data stream.

For some reason that I didn’t feel was adequately explained in any documentation I could find, this data broker framework is also the only possible basis or instructions I could find for implementing a minimap button, which I suppose must function something like a separate addon that communicates back and forth with yours via the data broker.

LDBIcon wraps the core LibDataBroker functionality with an easy-to-use framework for creating and managing our minimap button.

LDBIcon (or LibDataBroker beneath that) handles remembering the position along the minimap.

We specify in minimap.lua

· a function that formats the tooltip each time it’s displayed
· an added function that supports changing the icon to reflect the ON/OFF status

· the OnClick function

6.7.9.1. Titan Panel

Because of the nature of the LibDataBroker, Titan Panel (a third party addon that I like) detects that we created an LDB (or maybe the LDBIcon) and presents an option to show the SS minimap icon in the Titan Panel.

I have heard of additional minimap button encapsulator addons that function on the same principle.

There are some minor imperfections in the integration between SS and Titan, but I have so far failed to find adequate documentation on Titan to refine the integration between us. To be fair, I haven’t looked very hard yet as of this writing. (3.2.2.12). I assume it should be possible to provide more thorough or better-formatted information to the LDB in order to refine the integration between SS and minimap button manager addons.

6.7.10. LibBetterBlizzOptions
Simply embedding this library in our addon and listing it in the TOC file (maybe via embeds.xml) is enough to make it do its job. It hacks into the blizzard options frame to modify the style flags so that it’s movable, resizable, and slightly larger by default. I copied it out of another addon to ensure that SS users would also get the intended visual presentation of the options GUI that I see while developing it. No function call is necessary to activate it anywhere else in the SpeakinSpell source code.

6.8. Third Party API and Addon-Addons

The following two design aspects of SpeakinSpll combine to form an easy way for other WoW addons to integrate with it

1. LUA has global scope, so any other addon can easily check if the SpeakinSpell addon exists and gain access to it to call SpeakinSpell:OnSpeechEvent(DetectedEventStub).

2. The detected event stub design minimizes what it takes to add custom event parameters and signal OnSpeechEvent with minimal lines of code is a simple main entry point into SS.

As of this writing (v3.2.2.14), this has never been tried, but theoretically it should be very easy.

Ticket 56 includes the original documentation here: http://www.wowace.com/addons/speakinspell/tickets/56-document-an-api-for-other-addons-to-create-speakin/
Sample code should theoretically look like this:

local SpeakinSpell = LibStub("AceAddon-3.0"):GetAddon("SpeakinSpell")

local DetectedEventStub = {

-- name can be any name you want to give this event

name = "any event name",

-- type must be supported event type name

-- Unexpected type names will safely be converted to "EVENT" which is a "Misc. Event"

-- in many cases, the type name is the same as the blizzard API event name that signals the event

type = "EVENT",

-- anything else you specify in this stub data structure is option

-- and will be used to override the default value of <substitutions>

-- and can also be used to provide support for additional event-specific substitutions

}

SpeakinSpell:OnSpeechEvent(DetectedEventStub)

You must have the LibStub addon embedded in your addon.
For more about the design and implementation of this function, see also: 5.3.4 Detected Event Stubs
7. Network System

7.1. SendAddonMessage

The basis of the network communication system is the blizzard API, SendAddonMessage. This sends text strings via invisible chat channels to other SpeakinSpell clients, which receive a CHAT_MSG_ADDON event.
7.2. ChattThrottleLib (CTL)

CTL manages access to SendAddonMessage by limiting the speed at which text is sent, to avoid errors and disconnects which can occur from overloading it.
7.3. AceComm-3.0

Splits long text strings into short enough segments to pass them through CTL and SendAddonMessage, and then reassembles them at the other end. This process reserves a couple of byte codes that can’t be used in the transferred data.

7.4. AceSerializer-3.0

This lib converts a list of tables into a text string that can be passed through AceComm, or recreates tables from such a string. We pass a single table through this system, containing all the data we want to send.

local packet = {

-- from me

sender = UnitName("player"),

-- version info

dataversion = SpeakinSpell.DATA_VERSION,

clientversion = SpeakinSpell.CURRENT_VERSION,

commversion = SpeakinSpell.NETWORK_VERSION, -- past versions are checking this

-- command and parameters

command = command,

data = data,

}

local packetstring = self:Serialize(packet)

self:SendCommMessage("SPEAKINSPELL", packetstring, distribution, target, "BULK", callbackFn, callbackArg)

7.5. Network.lua
This file encapsulates the way we send/receive data through AceComm. It uses a command-response system

7.6. Command-Response System

7.6.1. Basic auto-sync process

The process starts by sending a single outbound command with no args: sync?

We’re only going to send data out if someone replies asking for it.

A sync? request goes to either a single player over WHISPER or a whole channel like RAID.

It specifies what I collect and what I share.

The receiver sends requests to retrieve the data I share, and sends out any data that I collect as I requested.
The sync request includes a version number (attacked to every packet). If I don’t share or collect any data, I will brag that I’m a higher level version, if applicable, to make the far end show an upgrade alert.

7.6.2. Sync?

This asks if there are any clients out there who want to share data.
Both sending and collecting of data is optional, so whether a far client replies, and how it replies, will depend on its user’s preferences.

We don’t bother broadcasting our big tables unless someone is listening.
7.6.2.1. Version Checks
Version checks are triggered from sync? requests as shown above. They are also passive on any detection of a higher version number in a received packet.

To prevent duplicates of version spam, the highest known version number is tracked. Another newer version can login after that, but you never see the same version more than once.
If we don’t give any other reply to a sync? request, we’ll at least brag that we’re a higher level version, if applicable, to trigger an “upgrade available” message on the far end.
7.6.3. EventTable - ET? ET=

ET= sends an EventTable which becomes a content pack at the far end

ET? Asks for others’ EventTable
Each message is passed through a user option controlling whether to send that info, and whether to collect it.
We send the ET? First if applicable because it’s faster and we can send/receive at the same time.

7.6.4. NewEventsDetected - NEW? NEW=

Works similar to ET? ET= except that it includes a system to optimize the sync process.
This is a single list we want to include all possible event hooks, so it’s not necessary to send the complete list from both directions, because it’s going to include a lot of overlapping data.

So we send the complete list from one direction, and ask for the other side to send any new ones I should add to my list.

7.6.4.1. NEW? – nil

Requests the complete list

7.6.4.2. NEW? – table

Supplies my list and requests any new event hooks that I don’t know about (those not already included in this table)

7.6.4.3. NEW= table

Sends my list without asking for a reply

45

